首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
化学工业   15篇
金属工艺   2篇
一般工业技术   1篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有18条查询结果,搜索用时 0 毫秒
1.
Ceramic matrix composites have the potential to operate at high temperatures and are, therefore being considered for a variety of advanced energy technologies such as combustor liners in land-based gas turbo/generators, heat exchangers and advanced fission and fusion reactors. Ceramic matrix composites exhibit a range of crack growth mechanisms driven by a range of environmental and nuclear conditions. The crack growth mechanisms include: (1) fiber relaxation by thermal (FR) and irradiation (FIR) processes, (2) fiber stress-rupture (SR), (3) interface removal (IR) by oxidation, and (4) oxidation embrittlement (OE) resulting from glass formation including effects of glass viscosity. Analysis of these crack growth processes has been accomplished with a combination experimental/modeling effort. Dynamic, high-temperature, in situ crack growth measurements have been made in variable Ar + O2 environments while a Pacific Northwest National Laboratory (PNNL) developed model has been used to extrapolate this data and to add radiation effects. In addition to the modeling effort, a map showing these mechanisms as a function of environmental parameters was developed. This mechanism map is an effective tool for identifying operating regimes and predicting behavior. The process used to develop the crack growth mechanism map was to: (1) hypothesize and experimentally verify the operative mechanisms, (2) develop an analytical model for each mechanism, and (3) define the operating regime and boundary conditions for each mechanism. A map for SiC/SiC composites has been developed for chemical and nuclear environments as a function of temperature and time.  相似文献   
2.
The boron nitride (BN) interphase of silicon nitride (Si3N4) fiber-reinforced BN matrix (Si3N4f/BN) composites was prepared by chemical vapor deposition (CVD) of liquid borazine, and the microstructure, growth kinetics and crystallinity of the BN coating were examined. The effects of coating thickness on the mechanical strength and fiber/matrix interfacial bonding strength of the composites were then investigated. The CVD BN coating plays a key role in weakening the interfacial bonding condition that improves the mechanical properties of the composites. The layering structure of the BN coating promotes crack propagation within the coating, which leads to a variety of toughening mechanisms including crack deflection, fiber bridging and fiber pull out. Single-fiber push-out experiments were performed to quantify the fiber/matrix bonding strength with different coating thicknesses. The physical bonding strength due to thermal mismatch was discussed.  相似文献   
3.
Boron nitride thin films were deposited on carbon fibres by chemical vapor deposition from the single source precursor tris(dimethylamino)borane (TDMAB). Hydrogen was used as carrier gas and additional nitrogen was supplied in the form of ammonia. The heating of the substrate was performed by Joule effect. Detailed TEM structural and chemical analyses reveal a meso-graphitic structure with a stoichiometric B/N ratio as confirmed by Auger Electron Spectroscopy (AES). A penetration of carbon element from the fibre was observed in the BN layer close to the interface.  相似文献   
4.
Due to the favorable self-healing performance, hexagonal boron nitride (h-BN) as additive in the matrix can significantly influence the oxidation behavior and the kinetic characteristics of C/C-SiC composites. In this work, C/C-SiC composites modified by h-BN (C/C-BN-SiC) were prepared by low-temperature compression molding (LTCM), pyrolysis and liquid silicon infiltration (LSI). Microstructure, oxidation behavior and kinetic characteristics of the C/C-BN-SiC composites were investigated compared with the C/C-SiC composite. Because h-BN is non-wetted by liquid silicon, the h-BN flakes in the matrix can obstruct and prolong the flow path of silicon, and protect the carbon fibers from corrosion to a certain extent. The oxidation kinetics of composites occur in low and high temperature domains, with different oxidation-controlling mechanisms, and the addition of h-BN can hinder the inward diffusion and lead to the decline of carbon recession and apparent activation energy.  相似文献   
5.
《Ceramics International》2019,45(15):18556-18562
In order to improve bonding property between SiC fibers and matrix of SiCf/SiC composites, boron nitride (BN) interfacial coatings were synthesized by chemical vapor infiltration. BN coatings were fabricated from BCl3–NH3 gaseous mixtures at four different temperatures (843 °C, 900 °C, 950 °C and 1050 °C) with different deposition times. Growth kinetics, nucleation and growth processes, microstructure and chemical composition of boron nitride coatings were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Raman spectrometry. Results showed that deposition rate increased as the temperature increased from 843 °C to 950 °C. However, deposition rate decreased slightly from 23.10 ± 0.85 nm/min (950 °C) to 21.39 ± 0.67 nm/min when the temperature was increased further to 1050 °C. It could be due to the nucleation occurring in the gas and the consumption of a large amount of BCl3 and NH3. When deposition temperature was 843 °C, BN grains deposited on top layer of the coating could not completely cross Ehrlich-Schwoebel barrier and grew in island growth mode. On the other hand, the deposition pattern followed a layer-by-layer growth mode when deposition temperature was 1050 °C. Deposition temperature significantly affected the microstructure of as-deposited BN coatings. At 843 °C, 950 °C and 1050 °C, the coatings presented amorphous, polycrystalline and hexagonal structures, respectively.  相似文献   
6.
《Ceramics International》2020,46(17):26530-26538
8 wt% yttria-stabilized zirconia (8YSZ) powders are fabricated as high-temperature based materials via a solid-state reaction method and ground into spheres in this paper. Following that, 4 wt% Nickle (Ni), 4 wt% Hexagonal Boron Nitride (hBN) and 4 wt% PHB (Polyphenyl ester) are added to 8YSZ for getting 8YSZ ceramic-based abradable seal powders (8YSZ CASp). Then, the 8YSZ CASp are sprayed on the stainless steel substrate with a NiCoCrAlY transition layer by an atmospheric plasma spraying (APS) technology. The phase structure, surface morphology and the cross-section topography of the fabricated are analyzed, the indentation hardness and nano-indentation test are conducted. The experiments of 8YSZ ceramic-based abradable seal coatings (8YSZ CASc) show that the deposition efficiency and porosity are respectively 78.5% and 21.8%, the bond strength is 4.6 MPa, the cycle number of thermal shock resistance is 37 times, those parameters prove that the fabricated 8YSZ CASc are promising abradable seal coatings.  相似文献   
7.
刘虎  肖国民 《涂料工业》2018,48(10):30-37
分别以甲基丙烯酸十二氟庚酯、甲基丙烯酸六氟丁酯为含氟单体,采用硫代甘油为链转移剂,通过自由基溶液聚合制备了2种含氟羟基丙烯酸酯树脂,考察了硫代甘油用量对树脂相对分子质量、黏度及羟基含量的影响,对树脂结构和热稳定性进行了表征;同时以多异氰酸酯为固化剂制备了聚氨酯涂膜,并对涂膜的表面能、光学透过性、耐化学品性以及常规物理性能进行了测试。结果表明:在硫代甘油用量为4%、固体分含量为60%的条件下,2种树脂的相对分子质量和黏度分别低至1 891、(231±2)mPa·s和2 144、(362±3)mPa·s;聚氨酯涂膜具有一定的疏水性,在可见光区范围内,涂膜光透过率大于98%,并具有良好的耐化学品性及常规物理性能。  相似文献   
8.
Oxidation behavior of a 3D Hi-Nicalon/SiC composite was investigated in wet and simulated air with a flow rate of 3.5 cm s−1 at temperatures above 1000 °C. Results showed that oxidation was occurred mainly on the specimens surface and rate-controlled by oxygen diffusion for both oxidation environments. Silica formed in wet air was viscous and thicker. After oxidation, strength deterioration of the composite was associated mainly with the degradation of Hi-Nicalon fiber. Meanwhile, the difference in fracture behavior could be attributed to the change of fiber/matrix interface bonding caused by high temperature oxidation.  相似文献   
9.
The thermal behaviour of a series of poly[B-(methylamino)borazine] prepared at various temperatures ranging from 140 to 200 °C is studied in the present paper as potential BN fiber precursors. It was shown that the softening capability of poly[B-(methylamino)borazine] can be tailored by controlling the temperature at which polymers were prepared to achieve melt-spinning and produce high quality green fibers. Thus as-spun fibers could be next converted into boron nitride fibers using ammonia (25–1000 °C) and nitrogen (25–1800 °C) atmospheres. The quality of boron nitride fibers was shown to depend on the first part of the pyrolysis step (25 and 1000 °C; ammonia atmosphere) in which the great majority of the weight loss necessary for boron nitride production occurs. Ideal poly[B-(methylamino)borazine] as BN fiber precursors are those prepared between 170 and 180 °C. They display appropriate melt-spinnability and ceramic conversion capability.  相似文献   
10.
The BN interphase of SiC fiber-reinforced SiC matrix (SiCf/SiC) composites was fabricated by dip-coating process with boric acid and urea as precursor. The results show that the tensile strength of SiC fiber decreases about 30% after BN coating treatment, but the BN coating has little influence on the electrical resistivity of SiC fiber. Compared with the as-received SiCf/SiC composites, the SiCf/SiC composites with BN interphase exhibit a toughened fracture behavior, and the flexural strength is about 2 times that of the as-received SiCf/SiC composites. From the microstructural analysis, it can be confirmed that the BN interphase plays a key part in weakening interfacial bonding, which can improve the mechanical properties of SiCf/SiC composites remarkably. Owing to the close dielectric properties between SiC and BN, the complex permittivity of SiCf/SiC composites with and without the BN interphase is similar.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号